Skip to main content

Getting Started - SWE-agent Documentation

·894 words·5 mins
Articoli AI Agent
Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.
Default featured image
#### Source

Type: Web Article Original link: https://swe-agent.com/latest/ Publication date: 2026-01-19


Summary
#

Introduction
#

Imagine you are a developer working on an open-source project on GitHub. You need to quickly resolve a critical bug, but you don’t have the time to manually sift through the code for vulnerabilities. Or, imagine you are a researcher who wants to automate the process of identifying security vulnerabilities in a repository. In both cases, SWE-agent is the tool that can make a difference.

SWE-agent is an innovative project that allows language models to use tools autonomously to solve problems in GitHub repositories, find security vulnerabilities, or perform custom tasks. This tool is particularly relevant today, in a world where automation and artificial intelligence are becoming increasingly central to software development. Thanks to SWE-agent, you can let artificial intelligence do the heavy lifting, allowing you to focus on what really matters: creating quality software.

What It Does
#

SWE-agent is a tool that allows language models to use tools autonomously to solve problems in GitHub repositories, find security vulnerabilities, or perform custom tasks. Think of it as a virtual assistant for developers, capable of acting autonomously and intelligently on GitHub repositories. SWE-agent was developed and maintained by researchers from Princeton University and Stanford University, which guarantees a high level of reliability and innovation.

The main focus of SWE-agent is its ability to operate autonomously, giving the language model maximum freedom. It is configurable via a single YAML file, making it easy to manage and customize. Additionally, it is designed to be simple and hackable, making it ideal for research and development. SWE-agent has been tested and verified on SWE-bench, a benchmark for evaluating the problem-solving capabilities of language models, demonstrating that it is at the forefront of open-source projects.

Why It’s Amazing
#

Autonomy and Flexibility
#

SWE-agent represents a significant step forward in the field of software development automation. Its ability to operate autonomously and generalizably makes it an extremely flexible tool. For example, a development team can use SWE-agent to automatically resolve the most common bugs in a GitHub repository, freeing up valuable time for developers. This is particularly useful in open-source projects, where code maintenance can be a time-consuming and arduous task.

Configurability and Documentation
#

Another strength of SWE-agent is its configurability. Thanks to a single YAML file, it is possible to manage and customize the behavior of the tool in a simple and effective way. This makes SWE-agent suitable for both research projects and practical applications. For example, a researcher can configure SWE-agent to test new hypotheses on how to solve security problems automatically, while a developer can use it to improve code quality in a commercial project.

Concrete Results
#

SWE-agent has demonstrated its effectiveness in various scenarios. For example, Mini-SWE-Agent achieved a 70% score on SWE-bench, verified in 1000 lines of Python code. This result was achieved thanks to the tool’s ability to process images from GitHub issues using AI models capable of vision. Additionally, SWE-agent has set records on SWE-bench on several occasions, demonstrating that it is a cutting-edge tool in the field.

Practical Applications
#

SWE-agent is useful for a wide range of users, from developers to researchers. For example, a development team can use SWE-agent to automatically resolve the most common bugs in a GitHub repository, freeing up valuable time for developers. A researcher can configure SWE-agent to test new hypotheses on how to solve security problems automatically. Additionally, SWE-agent can be used to perform custom tasks, such as code analysis to identify vulnerability patterns.

To delve deeper into the features and goals of SWE-agent, you can consult the official documentation available at swe-agent.com. Here you will find user guides, practical examples, and detailed information on how to configure and use the tool. Additionally, you can explore related projects such as Mini-SWE-Agent, SWE-ReX, and SWE-smith to see how SWE-agent can be integrated into various software development contexts.

Final Thoughts
#

SWE-agent represents a significant step forward in the field of software development automation. Its ability to operate autonomously and generalizably makes it an extremely flexible and powerful tool. In a world where automation and artificial intelligence are becoming increasingly central, SWE-agent offers a concrete solution to improve code efficiency and quality.

In conclusion, SWE-agent is a tool that can make a difference for developers and researchers. Its configurability, detailed documentation, and concrete results make it an ideal choice for anyone who wants to automate the process of solving problems in GitHub repositories. If you are a developer or a researcher, it is worth taking a look at SWE-agent and seeing how it can improve your workflow.


Use Cases
#

  • Private AI Stack: Integration into proprietary pipelines
  • Client Solutions: Implementation for client projects
  • Development Acceleration: Reduction of time-to-market for projects

Resources
#

Original Links #


Article suggested and selected by the Human Technology eXcellence team, elaborated through artificial intelligence (in this case with LLM HTX-EU-Mistral3.1Small) on 2026-01-19 11:04 Original source: https://swe-agent.com/latest/

Related Articles #

Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.