Skip to main content

Reimagining LLM Memory: Using Context as Training Data Unlocks Models That Learn at Test-Time

·913 words·5 mins
Corso Natural Language Processing AI Foundation Model LLM
Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.
Featured image
#### Source

Type: Web Article Original link: https://developer.nvidia.com/blog/reimagining-llm-memory-using-context-as-training-data-unlocks-models-that-learn-at-test-time/ Publication date: 2026-01-15


Summary
#

Introduction
#

Imagine working on a complex machine learning project where you need to manage entire conversations, volumes of books, or multiple codebases simultaneously. Large Language Models (LLMs) promise to be able to do this, but they often prove ineffective, forcing us to repeatedly provide context to make them “understand.” This is a problem many of us have encountered, making working with these models frustrating and inefficient.

The issue lies in the difference between LLM memory and human memory. Humans are capable of learning and improving with experience, even if we don’t remember every detail. LLMs, on the other hand, are designed for near-perfect recall, but this makes them inefficient with long contexts. This is where NVIDIA’s new approach comes into play: test-time training with an end-to-end formulation (TTT-EE). This method allows LLMs to compress the context in which they operate into their weights, significantly improving their ability to learn and adapt in real-time.

What It’s About
#

This NVIDIA technical blog article explores the current limitations of LLMs and introduces an innovative solution to improve their ability to handle long contexts. The main focus is on test-time training with an end-to-end formulation (TTT-EE), a method that allows LLMs to compress the context in which they operate into their weights through next-token prediction. This approach is comparable to how humans compress experiences into insights, allowing LLMs to learn and adapt in real-time.

The key point is that TTT-EE scales well in terms of both loss and latency, unlike other methods such as Transformers with full attention or Recurrent Neural Networks (RNNs). This makes TTT-EE a promising solution for addressing one of the most fundamental problems in LLM research: handling long contexts.

Why It’s Relevant
#

Efficiency and Scalability
#

TTT-EE represents a significant step forward in managing long contexts. While traditional methods like Transformers with full attention or RNNs have notable limitations, TTT-EE maintains low loss and consistent latency, regardless of context length. This is crucial for applications that require handling large amounts of data, such as automatic translation, long text analysis, or managing complex conversations.

Concrete Examples
#

A concrete example is the use of TTT-EE in a customer support system. Imagine a chatbot that needs to manage entire conversations with a customer, remembering important details without having to repeatedly provide the context. With TTT-EE, the chatbot can compress relevant information into its weights, improving the quality of responses and reducing response time. This not only improves the user experience but also reduces operational costs for the company.

Impact on the Sector
#

The introduction of TTT-EE has significant implications for the machine learning and artificial intelligence sectors. This method could revolutionize how we manage and use data, making LLMs more efficient and adaptable. Additionally, TTT-EE could open new possibilities for applications that require advanced context management, such as scientific research, historical text analysis, or creating personalized content.

Practical Applications
#

Use Cases
#

TTT-EE is particularly useful for developers and researchers working with large volumes of data. For example, a research team analyzing historical texts can use TTT-EE to compress and manage relevant information without having to repeatedly provide the context. This allows for more accurate results and reduces the time needed for analysis.

Who It’s Useful For
#

This content is useful for anyone working with large language models, both in academic and industrial settings. Developers, researchers, and data scientists can benefit from TTT-EE to improve the efficiency and adaptability of their models. Additionally, companies using chatbots or customer support systems can implement TTT-EE to improve the quality of user interactions.

How to Apply the Information
#

To apply TTT-EE, it is first necessary to understand the functioning of test-time training and end-to-end formulation. NVIDIA has made the paper and code publicly available, allowing anyone to experiment and implement this method. Additionally, you can consult the resources and tutorials available on NVIDIA’s website to deepen your knowledge and apply TTT-EE in your projects.

Final Thoughts
#

NVIDIA’s research on TTT-EE represents a significant step forward in managing long contexts for LLMs. This method not only improves the efficiency and adaptability of models but also opens new possibilities for advanced applications. In the context of the tech ecosystem, TTT-EE could become a standard for data management, influencing how we develop and use large language models.

For readers, this article provides a comprehensive overview of TTT-EE, highlighting its value and potential. Implementing TTT-EE in your projects can lead to significant improvements in terms of efficiency and quality, making large language models more powerful and adaptable.


Use Cases
#

  • Private AI Stack: Integration into proprietary pipelines
  • Client Solutions: Implementation for client projects
  • Development Acceleration: Reduction in time-to-market for projects

Resources
#

Original Links #


Article recommended and selected by the Human Technology eXcellence team, processed through artificial intelligence (in this case with LLM HTX-EU-Mistral3.1Small) on 2026-01-15 07:58 Original source: https://developer.nvidia.com/blog/reimagining-llm-memory-using-context-as-training-data-unlocks-models-that-learn-at-test-time/

Related Articles #

This paper is based on a seminar technical report from the course Trends in Autonomous Agents: Advances in Architecture and Practice offered at the Technical University of Munich (TUM).](posts/2025/12/fundamentals-of-building-autonomous-llm-agents-thi/) - AI Agent, LLM

Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.