Skip to main content

Recursive Language Models

·546 words·3 mins
Research AI Foundation Model LLM
Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.
Default featured image
#### Source

Type: PDF Document
Original Link:
Publication Date: 2026-01-15

Author: Alex L. Zhang; Tim Kraska; Omar Khattab


Summary
#

WHAT - Recursive Language Models (RLMs) are a general-purpose inference paradigm that allows large language models (LLMs) to process arbitrarily long prompts by treating them as part of an external environment. This approach enables the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt.

WHY - RLMs are relevant because they address the limitation of LLMs in handling long-context tasks, which is crucial for applications requiring processing of tens or hundreds of millions of tokens. They outperform base LLMs and common long-context scaffolds across various tasks while maintaining comparable or lower costs.

WHO - The key actors are researchers from MIT CSAIL, including Alex L. Zhang, Tim Kraska, and Omar Khattab. The technology is also relevant to competitors and companies developing advanced AI models, such as OpenAI and Qwen Team.

WHERE - RLMs position themselves within the AI ecosystem by offering a scalable solution for long-context processing, competing with other long-context management strategies like context condensation and retrieval-based methods.

WHEN - RLMs are a relatively new development, aiming to address the growing need for handling long-context tasks as LLMs become more widely adopted. The technology is still in the research and development phase but shows promising results for future integration.

BUSINESS IMPACT:

  • Opportunities: RLMs can be integrated into private AI systems to handle long-context tasks more efficiently, reducing costs and improving performance. This is particularly valuable for applications in research, code repository understanding, and information aggregation.
  • Risks: Competitors like OpenAI and Qwen Team are also developing advanced long-context processing methods, which could pose a threat if they achieve similar or better results.
  • Integration: RLMs can be integrated with existing AI stacks by treating long prompts as external environment variables, allowing for recursive processing and decomposition. This can be implemented using Python REPL environments and sub-LM calls.

TECHNICAL SUMMARY:

  • Core Technology Stack: RLMs use Python REPL environments to load and interact with long prompts as variables. They leverage sub-LM calls to decompose and process snippets of the prompt recursively. The models evaluated include GPT- and Qwen-Coder-B-AB, with context windows of up to K tokens.
  • Scalability: RLMs can handle inputs up to two orders of magnitude beyond the model context windows, making them highly scalable for long-context tasks. However, the scalability is limited by the efficiency of the recursive calls and the model’s ability to manage large datasets.
  • Differentiators: The key differentiators are the ability to treat prompts as external environment variables, allowing for recursive decomposition and processing. This approach outperforms traditional context condensation methods and other long-context scaffolds, maintaining strong performance even for shorter prompts.

Use Cases
#

  • Private AI Stack: Integration into proprietary pipelines
  • Client Solutions: Implementation for client projects

Resources
#

Original Links #


Article recommended and selected by the Human Technology eXcellence team, processed through artificial intelligence (in this case with LLM HTX-EU-Mistral3.1Small) on 2026-01-15 11:42 Original source:

Related Articles #

Articoli Interessanti - This article is part of a series.
Part : This Article
Part : How to Build an Agent - Amp **Introduction** Building an agent, especially one that leverages the power of Amp, involves several key steps. Amp, which stands for Advanced Multi-Purpose Protocol, is a versatile framework designed to enhance the capabilities of agents in various domains. This guide will walk you through the process of creating an agent using Amp, from conceptualization to deployment. **1. Define the Purpose and Scope** Before diving into the technical details, it's crucial to define the purpose and scope of your agent. Ask yourself the following questions: - What specific tasks will the agent perform? - In what environments will the agent operate? - What are the key performance metrics for success? **2. Choose the Right Tools and Technologies** Selecting the appropriate tools and technologies is essential for building a robust agent. For an Amp-based agent, you might need: - **Programming Languages**: Python, Java, or C++ are commonly used. - **Development Frameworks**: TensorFlow, PyTorch, or custom frameworks compatible with Amp. - **Data Sources**: APIs, databases, or real-time data streams. - **Communication Protocols**: HTTP, WebSockets, or other protocols supported by Amp. **3. Design the Agent Architecture** The architecture of your agent will determine its efficiency and scalability. Consider the following components: - **Input Layer**: Handles data ingestion from various sources. - **Processing Layer**: Processes the data using algorithms and models. - **Output Layer**: Delivers the results to the end-users or other systems. - **Feedback Loop**: Allows the agent to learn and improve over time. **4. Develop the Core Functionality** With the architecture in place, start developing the core functionality of your agent. This includes: - **Data Ingestion**: Implementing mechanisms to collect and preprocess data. - **Algorithm Development**: Creating or integrating algorithms that will drive the agent's decision-making. - **Model Training**: Training machine learning models if applicable. - **Integration**: Ensuring seamless integration with other systems and protocols. **5. Implement Amp Protocols** Integrate Amp protocols into your agent to leverage its advanced capabilities. This might involve: - **Protocol Implementation**: Writing code to adhere to Amp standards. - **Communication**: Ensuring the agent can communicate effectively with other Amp-compatible systems. - **Security**: Implementing security measures to protect data and communications. **6. Testing and Validation** Thoroughly test
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : Introduction to the MCP Toolbox for Databases The MCP Toolbox for Databases is a comprehensive suite of tools designed to facilitate the management, optimization, and maintenance of databases. This toolbox is tailored to support a wide range of database management systems (DBMS), ensuring compatibility and efficiency across various platforms. Whether you are a database administrator, developer, or analyst, the MCP Toolbox provides a robust set of features to streamline your workflow and enhance productivity. Key Features: 1. **Database Management**: Easily create, modify, and delete databases and tables. The toolbox offers intuitive interfaces and powerful scripting capabilities to manage database schemas and objects efficiently. 2. **Performance Optimization**: Identify and resolve performance bottlenecks with advanced diagnostic tools. The MCP Toolbox includes performance monitoring and tuning features to ensure your databases run smoothly and efficiently. 3. **Backup and Recovery**: Implement reliable backup and recovery solutions to safeguard your data. The toolbox provides automated backup schedules and comprehensive recovery options to protect against data loss. 4. **Security Management**: Enhance database security with robust access control and encryption features. The MCP Toolbox helps you manage user permissions, audit logs, and secure data transmission. 5. **Data Integration**: Seamlessly integrate data from multiple sources and formats. The toolbox supports various data integration techniques, including ETL (Extract, Transform, Load) processes, to consolidate and analyze data effectively. 6. **Reporting and Analytics**: Generate insightful reports and perform in-depth data analysis. The MCP Toolbox offers advanced reporting tools and analytics capabilities to derive actionable insights from your data. 7. **Cross-Platform Compatibility**: Ensure compatibility with multiple DBMS platforms, including popular systems like Oracle, SQL Server, MySQL, and PostgreSQL. The toolbox is designed to work seamlessly across different environments. 8. **User-Friendly Interface**: Benefit from an intuitive and user-friendly interface that simplifies complex database tasks. The MCP Toolbox is designed with ease of use in mind, making it accessible to both novice and experienced users. The MCP Toolbox for Databases is an essential tool for anyone involved in database management. Its comprehensive features and cross-platform compatibility make it a valuable asset for optimizing database performance, ensuring data security, and enhancing overall productivity.