Skip to main content

AI Engineering Hub

·369 words·2 mins
GitHub Open Source AI LLM AI Agent
Articoli Interessanti - This article is part of a series.
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : This Article
Default featured image
#### Source

Type: GitHub Repository Original link: https://github.com/patchy631/ai-engineering-hub Publication date: 2025-09-22


Summary
#

WHAT - The ai-engineering-hub repository is an educational resource that offers in-depth tutorials on Large Language Models (LLMs), Retrieval-Augmented Generation (RAGs), and real-world applications of AI agents.

WHY - It is relevant for AI business because it provides practical and theoretical resources to develop advanced AI skills, which are crucial for innovation and staying competitive in the market.

WHO - The main actors are the AI developer and researcher community, with contributions from patchy631 and other collaborators.

WHERE - It positions itself in the market as an open-source educational resource, integrating into the AI ecosystem as support for the development of practical and theoretical skills.

WHEN - The repository is active and growing, with a positive trend indicated by the number of stars and forks, suggesting increasing interest and maturing development.

BUSINESS IMPACT:

  • Opportunities: Access to practical tutorials to train the internal team on advanced AI technologies, reducing learning time and accelerating the development of innovative solutions.
  • Risks: Dependence on open-source resources that may not always be updated or supported, requiring continuous monitoring.
  • Integration: Tutorials can be integrated into internal training programs and used to develop prototypes and proofs-of-concept.

TECHNICAL SUMMARY:

  • Core technology stack: Jupyter Notebook, LLMs, RAGs, AI agents.
  • Scalability: High scalability due to the open-source nature and the possibility of contributing new tutorials and improvements.
  • Limitations: Dependence on the quality and timeliness of community contributions.
  • Technical differentiators: Focus on real-world applications and practical tutorials, which add value compared to theoretical documentation.

Use Cases
#

  • Private AI Stack: Integration into proprietary pipelines
  • Client Solutions: Implementation for client projects
  • Development Acceleration: Reduction of time-to-market for projects
  • Strategic Intelligence: Input for technological roadmap
  • Competitive Analysis: Monitoring AI ecosystem

Resources
#

Original Links #


Article recommended and selected by the Human Technology eXcellence team, processed through artificial intelligence (in this case with LLM HTX-EU-Mistral3.1Small) on 2025-09-22 15:00 Original source: https://github.com/patchy631/ai-engineering-hub

Related Articles #

Articoli Interessanti - This article is part of a series.
Part : Everything as Code: How We Manage Our Company In One Monorepo At Kasava, we've embraced the concept of "everything as code" to streamline our operations and ensure consistency across our projects. This approach allows us to manage our entire company within a single monorepo, providing a unified source of truth for all our configurations, infrastructure, and applications. **Why a Monorepo?** A monorepo offers several advantages: 1. **Unified Configuration**: All our settings, from development environments to production, are stored in one place. This makes it easier to maintain consistency and reduces the risk of configuration drift. 2. **Simplified Dependency Management**: With all our code in one repository, managing dependencies becomes more straightforward. We can easily track which versions of libraries and tools are being used across different projects. 3. **Enhanced Collaboration**: A single repository fosters better collaboration among team members. Everyone has access to the same codebase, making it easier to share knowledge and work together on projects. 4. **Consistent Build and Deployment Processes**: By standardizing our build and deployment processes, we ensure that all our applications follow the same best practices. This leads to more reliable and predictable deployments. **Our Monorepo Structure** Our monorepo is organized into several key directories: - **/config**: Contains all configuration files for various environments, including development, staging, and production. - **/infrastructure**: Houses the infrastructure as code (IaC) scripts for provisioning and managing our cloud resources. - **/apps**: Includes all our applications, both internal tools and customer-facing products. - **/lib**: Stores reusable libraries and modules that can be shared across different projects. - **/scripts**: Contains utility scripts for automating various tasks, such as data migrations and backups. **Tools and Technologies** To manage our monorepo effectively, we use a combination of tools and technologies: - **Version Control**: Git is our primary version control system, and we use GitHub for hosting our repositories. - **Continuous Integration/Continuous Deployment (CI/CD)**: We employ Jenkins for automating our build, test, and deployment processes. - **Infrastructure as Code (IaC)**: Terraform is our tool of choice for managing cloud infrastructure. - **Configuration Management**: Ansible is used for configuring and managing our servers and applications. - **Monitoring and Logging**: We use Prometheus and Grafana for monitoring,
Part : This Article